
Bourne / Bash Scripting Tutorial

A Bourne Shell Programming/Scripting Tutorial for learning about using the Unix shell.

Shell Scripting Tutorial © 2000-2007 Steve Parker,
PDF prepared by HedgeR (Ёжич)

Table of contents

1. Introduction ...2

Purpose Of This Tutorial.. 2
Getting The Most Recent Version Of This Tutorial... 2
A Brief History of sh.. 2
Audience .. 2
Typographical Conventions Used in This Tutorial .. 2

2. Philosophy ...3
3. A First Script ...4
4. Variables - Part I..5

Scope of Variables ... 6
5. Wildcards...7
6. Escape Characters..8
7. Loops ...9

For Loops... 9
While Loops... 10

8. Test ..11
9. Case ...15
10. Variables - Part II ..16
11. Variables - Part III ...17
12. External Programs ...18
13. Functions ...19

Scope of Variables ... 20
Recursion ... 21
Exit Codes.. 22

14. Hints and Tips ...23
Cheating ... 24
Telnet hint .. 25

15. Quick Reference ..26
16. Interactive Shell...27

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 2 of 28

1. Introduction

Purpose Of This Tutorial

This tutorial is written to help people understand some of the basics of shell script programming, and hopefully to introduce
some of the possibilities of simple but powerful programming available under the bourne shell. As such, it has been written as a
basis for one-on-one or group tutorials and exercises, and as a reference for subsequent use.

Getting The Most Recent Version Of This Tutorial

The most recent version of this tutorial is available from: http://steve-parker.org/sh/sh.shtml. Always check there for the latest
copy.

A Brief History of sh

Steve Bourne, wrote the Bourne shell which appeared in the Seventh Edition Bell Labs Research version of Unix.
Many other shells have been written; this particular tutorial concentrates on the Bourne and the Bourne Again shells.
Other shells include the Korn Shell (ksh), the C Shell (csh), and variations such as tcsh.
This tutorial does not cover those shells. Maybe a future version will cover ksh; I do not intend to write a tutorial for csh, as csh
programming is considered harmful.

Audience

This tutorial assumes some prior experience; namely:

• Use of an interactive Unix shell
• Minimal programming knowledge - use of variables, functions, is useful background knowledge
• Understanding of how Unix commands are structured, and competence in using some of the more common ones.
• Programmers of C, Pascal, or any programming language (even BASIC) who can maybe read shell scripts, but don't

feel they understand exactly how they work.

Typographical Conventions Used in This Tutorial

Significant words will be written in italics when mentioned for the first time.

Code segments and script output will be displayed as preformatted text.
Command-line entries will be preceded by the Dollar sign ($). If your prompt is different, enter the command:

PS1="$ " ; export PS1

Then your interactions should match the examples given (such as $./my-script.sh below).
Script output (such as "Hello World" below) is displayed at the start of the line.

$ echo '#!/bin/sh' > my-script.sh
$ echo 'echo Hello World' >> my-script.sh
$ chmod 755 my-script.sh
$./my-script.sh
Hello World
$

Entire scripts will be surrounded by thick horizontal rules and include a reference where available to the plain text of the script:

first.sh
#!/bin/sh
This is a comment!
echo Hello World # This is a comment, too!

Note that to make a file executable, you must set the eXecutable bit, and for a shell script, the Readable bit must also be set:

$ chmod a+rx first.sh

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 3 of 28

2. Philosophy
Shell script programming has a bit of a bad press amongst some Unix systems administrators. This is normally
because of one of two things:

• The speed at which an interpreted program will run as compared to a C program, or even an interpreted Perl program.
• Since it is easy to write a simple batch-job type shell script, there are a lot of poor quality shell scripts around.

It is partly due to this that there is a certain machismo associated with creating good shell scripts. Scripts which can
be used as CGI programs, for example, without losing out too much in speed to Perl (though both would lose to C,
in many cases, were speed the only criteria).
There are a number of factors which can go into good, clean, quick, shell scripts.

• The most important criteria must be a clear, readable layout.
• Second is avoiding unnecessary commands.

A clear layout makes the difference between a shell script appearing as "black magic" and one which is easily
maintained and understood.
You may be forgiven for thinking that with a simple script, this is not too significant a problem, but two things here
are worth bearing in mind.

1. First, a simple script will, more often than anticipated, grow into a large, complex one.
2. Secondly, if nobody else can understand how it works, you will be lumbered with maintaining it yourself for the rest

of your life!

Something about shell scripts seems to make them particularly likely to be badly indented, and since the main
control structures are if/then/else and loops, indentation is critical for understanding what a script does.

One of the major weaknesses in many shell scripts is lines such as:

cat /tmp/myfile | grep "mystring"

which would run much faster as:

grep "mystring" /tmp/myfile

Not much, you may consider; the OS has to load up the /bin/grep executable, which is a reasonably small 75600
bytes on my system, open a pipe in memory for the transfer, load and run the /bin/cat executable, which is an
even smaller 9528 bytes on my system, attach it to the input of the pipe, and let it run.
Of course, this kind of thing is what the OS is there for, and it's normally pretty efficient at doing it. But if this
command were in a loop being run many times over, the saving of not locating and loading the cat executable,
setting up and releasing the pipe, can make some difference, especially in, say, a CGI environment where there are
enough other factors to slow things down without the script itself being too much of a hurdle. Some Unices are
more efficient than others at what they call "building up and tearing down processes" - ie, loading them up,
executing them, and clearing them away again. But however good your flavour of Unix is at doing this, it'd rather
not have to do it at all.

As a result of this, you may hear mention of the Useless Use of Cat Award (UUoC), also known in some circles as
The Award For The Most Gratuitous Use Of The Word Cat In A Serious Shell Script being bandied about on
the comp.unix.shell newsgroup from time to time. This is purely a way of peers keeping each other in check,
and making sure that things are done right.

Speaking of which, I would like to recommend the comp.os.unix.shell newsgroup to you, although its signal
to noise ratio seems to have decreased in recent years. There are still some real gurus who hang out there with good
advice for those of us who need to know more (and that's all of us!). Sharing experiences is the key to all of this -
the reason behind this tutorial itself, and we can all learn from and contribute to open discussions about such issues.
Which leads me nicely on to something else: Don't ever feel too close to your own shell scripts; by their nature, the
source cannot be closed. If you supply a customer with a shell script, s/he can inspect it quite easily. So you might
as well accept that it will be inspected by anyone you pass it to; use this to your advantage with the GPL -
encourage people to give you feedback and bugfixes for free!

document made by Ёжич

Скачано с сайта гр. ВВ-2-06
http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 4 of 28

3. A First Script
For our first shell script, we'll just write a script which says "Hello World". We will then try to get more out of a Hello World
program than any other tutorial you've ever read :-)
Create a file (first.sh) as follows:

first.sh

#!/bin/sh
This is a comment!
echo Hello World # This is a comment, too!

The first line tells Unix that the file is to be executed by /bin/sh. This is the standard location of the Bourne shell on
just about every Unix system. If you're using GNU/Linux, /bin/sh is normally a symbolic link to bash.

The second line begins with a special symbol: #. This marks the line as a comment, and it is ignored completely by
the shell.
The only exception is when the very first line of the file starts with #! - as ours does. This is a special directive
which Unix treats specially. It means that even if you are using csh, ksh, or anything else as your interactive shell,
that what follows should be interpreted by the Bourne shell.
Similarly, a Perl script may start with the line #!/usr/bin/perl to tell your interactive shell that the program
which follows should be executed by perl. For Bourne shell programming, we shall stick to #!/bin/sh.

The third line runs a command: echo, with two parameters, or arguments - the first is "Hello"; the second is
"World".
Note that echo will automatically put a single space between its parameters.
The # symbol still marks a comment; the # and anything following it is ignored by the shell.

now run chmod 755 first.sh to make the text file executable, and run ./first.sh.
Your screen should then look like this:

$ chmod 755 first.sh
$./first.sh
Hello World
$

You will probably have expected that! You could even just run:

$ echo Hello World
Hello World
$

Now let's make a few changes.
First, note that echo puts ONE space between its parameters. Put a few spaces between "Hello" and "World". What
do you expect the output to be? What about putting a TAB character between them?
As always with shell programming, try it and see.
The output is exactly the same! We are calling the echo program with two arguments; it doesn't care any more than
cp does about the gaps in between them.
Now modify the code again:

#!/bin/sh
This is a comment!
echo "Hello World" # This is a comment, too!

This time it works. You probably expected that, too, if you have experience of other programming languages. But
the key to understanding what is going on with more complex command and shell script, is to understand and be
able to explain: WHY?
echo has now been called with just ONE argument - the string "Hello World". It prints this out exactly.
The point to understand here is that the shell parses the arguments BEFORE passing them on to the program being
called. In this case, it strips the quotes but passes the string as one argument.
As a final example, type in the following script. Try to predict the outcome before you run it:

first2.sh

#!/bin/sh
This is a comment!
echo "Hello World" # This is a comment, too!

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 5 of 28
echo "Hello World"
echo "Hello * World"
echo Hello * World
echo Hello World
echo "Hello" World
echo Hello " " World
echo "Hello \"*\" World"
echo `hello` world
echo 'hello' world

Is everything as you expected? If not, don't worry! These are just some of the things we will be covering in this
tutorial ... and yes, we will be using more powerful commands than echo

4. Variables - Part I
Just about every programming language in existence has the concept of variables - a symbolic name for a chunk of
memory to which we can assign values, read and manipulate its contents. The bourne shell is no exception, and this
section introduces idea. This is taken further in Variables - Part II which looks into variables which are set for us by
the environment.
Let's look back at our first Hello World example. This could be done using variables (though it's such a simple
example that it doesn't really warrant it!)
Note that there must be no spaces around the "=" sign: VAR=value works; VAR = value doesn't work. In the first
case, the shell sees the "=" symbol and treats the command as a variable assignment. In the second case, the shell
assumes that VAR must be the name of a command and tries to execute it.
If you think about it, this makes sense - how else could you tell it to run the command VAR with its first argument
being "=" and its second argument being "value"?
Enter the following code into var1.sh:

var.sh

#!/bin/sh
MY_MESSAGE="Hello World"
echo $MY_MESSAGE

This assigns the string "Hello World" to the variable MY_MESSAGE then echoes out the value of the variable.
Note that we need the quotes around the string Hello World. Whereas we could get away with echo Hello World
because echo will take any number of parameters, a variable can only hold one value, so a string with spaces must
be quoted to that the shell knows to treat it all as one. Otherwise, the shell will try to execute the command World
after assigning MY_MESSAGE=Hello

The shell does not care about types of variables; they may store strings, integers, real numbers - anything you like.
People used to Perl may be quite happy with this; if you've grown up with C, Pascal, or worse yet Ada, this may
seem quite strange.
In truth, these are all stored as strings, but routines which expect a number can treat them as such.
If you assign a string to a variable then try to add 1 to it, you will not get away with it:

$ x="hello"
$ y=`expr $x + 1`
expr: non-numeric argument
$

Since the external program expr only expects numbers. But there is no syntactic difference between:

MY_MESSAGE="Hello World"
MY_SHORT_MESSAGE=hi
MY_NUMBER=1
MY_PI=3.142
MY_OTHER_PI="3.142"
MY_MIXED=123abc

Note though that special characters must be properly escaped to avoid interpretation by the shell.
This is discussed further in Escape Characters.

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 6 of 28
We can interactively set variable names using the read command; the following script asks you for your name then
greets you personally:

var2.sh

#!/bin/sh
echo What is your name?
read MY_NAME
echo "Hello $MY_NAME - hope you're well."

Mario Bacinsky kindly pointed out to me that I had originally missed out the double-quotes in line 3, which meant
that the single-quote in the word "you're" was unmatched, causing an error. It is this kind of thing which can drive a
shell programmer crazy, so watch out for them!

This is using the shell-builtin command read which reads a line fro9/1/2007 5:11:00 PMm standard input into the
variable supplied.
Note that even if you give it your full name and don't use double quotes around the echo command, it still outputs
correctly. How is this done? With the MY_MESSAGE variable earlier we had to put double quotes around it to set it.
What happens, is that the read command automatically places quotes around its input, so that spaces are treated
correctly. (You will need to quote the output, of course - e.g. echo "$MY_MESSAGE").

Scope of Variables
Variables in the bourne shell do not have to be declared, as they do in languages like C. But if you try to read an
undeclared variable, the result is the empty string. You get no warnings or errors. This can cause some subtle bugs -
if you assign MY_OBFUSCATED_VARIABLE=Hello and then echo $MY_OSFUCATED_VARIABLE, you will get
nothing (as the second OBFUSCATED is mis-spelled).

There is a command called export which has a fundamental effect on the scope of variables. In order to really
know what's going on with your variables, you will need to understand something about how this is used.

Create a small shell script, myvar2.sh:

myvar2.sh

#!/bin/sh
echo "MYVAR is: $MYVAR"
MYVAR="hi there"
echo "MYVAR is: $MYVAR"

Now run the script:

$./myvar2.sh
MYVAR is:
MYVAR is: hi there

MYVAR hasn't been set to any value, so it's blank. Then we give it a value, and it has the expected result.
Now run:

$ MYVAR=hello
$./myvar2.sh
MYVAR is:
MYVAR is: hi there

It's still not been set! What's going on?!
When you call myvar2.sh from your interactive shell, a new shell is spawned to run the script. This is partly
because of the #!/bin/sh line at the start of the script, which we discussed earlier.
We need to export the variable for it to be inherited by another program - including a shell script. Type:

$ export MYVAR
$./myvar2.sh
MYVAR is: hello
MYVAR is: hi there

Now look at line 3 of the script: this is changing the value of MYVAR. But there is no way that this will be passed
back to your interactive shell. Try reading the value of MYVAR:

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 7 of 28
$ echo $MYVAR
hello
$

Once the shell script exits, its environment is destroyed. But MYVAR keeps its value of hello within your interactive
shell.
In order to receive environment changes back from the script, we must source the script - this effectively runs the
script within our own interactive shell, instead of spawning another shell to run it.
We can source a script via the "." command:

$ MYVAR=hello
$ echo $MYVAR
hello
$. ./myvar2.sh
MYVAR is: hello
MYVAR is: hi there
$ echo $MYVAR
hi there

The change has now made it out into our shell again! This is how your .profile or .bash_profile file works,
for example.
Note that in this case, we don't need to export MYVAR.
Thanks to sway for pointing out that I'd originally said echo MYVAR above, not echo $MYVAR as it should be. One
other thing worth mentioning at this point about variables, is to consider the following shell script:

#!/bin/sh
echo "What is your name?"
read USER_NAME
echo "Hello $USER_NAME"
echo "I will create you a file called $USER_NAME_file"
touch $USER_NAME_file

Think about what result you would expect. For example, if you enter "steve" as your USER_NAME, should the
script create steve_file?
Actually, no. This will cause an error unless there is a variable called USER_NAME_file. The shell does not know
where the variable ends and the rest starts. How can we define this?
The answer is, that we enclose the variable itself in curly brackets:

user.sh

#!/bin/sh
echo "What is your name?"
read USER_NAME
echo "Hello $USER_NAME"
echo "I will create you a file called ${USER_NAME}_file"
touch "${USER_NAME}_file"

The shell now knows that we are referring to the variable USER_NAME and that we want it suffixed with _file.
This can be the downfall of many a new shell script programmer, as the source of the problem can be difficult to
track down.

Also note the quotes around "${USER_NAME}_file" - if the user entered "Steve Parker" (note the space) then
without the quotes, the arguments passed to touch would be Steve and Parker_file - that is, we'd effectively be
saying touch Steve Parker_file, which is two files to be touched, not one. The quotes avoid this. Thanks to
Chris for highlighting this.

5. Wildcards

Wildcards are really nothing new if you have used Unix at all before.
It is not necessarily obvious how they are useful in shell scripts though. This section is really just to get the old grey cells
thinking how things look when you're in a shell script - predicting what the effect of using different syntaxes are. This will be
used later on, particularly in the Loops section.

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 8 of 28
Think first how you would copy all the files from /tmp/a into /tmp/b. All the .txt files? All the .html files?
Hopefully you will have come up with:

$ cp /tmp/a/* /tmp/b/
$ cp /tmp/a/*.txt /tmp/b/
$ cp /tmp/a/*.html /tmp/b/

Now how would you list the files in /tmp/a/ without using ls /tmp/a/?
How about echo /tmp/a/*? What are the two key differences between this and the ls output? How can this be useful? Or
a hinderance?
How could you rename all .txt files to .bak? Note that

$ mv *.txt *.bak

will not have the desired effect; think about how this gets expanded by the shell before it is passed to mv. Try this
using echo instead of mv if this helps.
We will look into this further later on, as it uses a few concepts not yet covered.

6. Escape Characters
Certain characters are significant to the shell; we have seen, for example, that the use of double quotes (") characters
affect how spaces and TAB characters are treated, for example:

$ echo Hello World
Hello World
$ echo "Hello World"
Hello World

So how do we display: Hello "World" ?

$ echo "Hello \"World\""

The first and last " characters wrap the whole lot into one parameter passed to echo so that the spacing between the
two words is kept as is. But the code:

$ echo "Hello "World""

would be interpreted as three parameters:

• "Hello "
• World
• ""

So the output would be

Hello World

Note that we lose the quotes entirely. This is because the first and second quotes mark off the Hello and following
spaces; the second argument is an unquoted "World" and the third argument is the empty string; "".

Most characters (*, ', etc) are not interpreted (ie, they are taken literally) by means of placing them in double
quotes ("). They are taken as is and passed on the the command being called. An example using the asterisk (*)
goes:

$ echo *
case.shtml escape.shtml first.shtml
functions.shtml hints.shtml index.shtml
ip-primer.txt raid1+0.txt
$ echo *txt
ip-primer.txt raid1+0.txt
$ echo "*"
*
$ echo "*txt"
*txt

In the first example, * is expanded to mean all files in the current directory.
In the second example, *txt means all files ending in txt.

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 9 of 28
In the third, we put the * in double quotes, and it is interpreted literally.
In the fourth example, the same applies, but we have appended txt to the string.

However, ", $, `, and \ are still interpreted by the shell, even when they're in double quotes.
The backslash (\) character is used to mark these special characters so that they are not interpreted by the shell, but
passed on to the command being run (for example, echo).
So to output the string: (Assuming that the value of $X is 5):

A quote is ", backslash is \, backtick is `.
A few spaces are and dollar is $. $X is 5.

we would have to write:

$ echo "A quote is \", backslash is \\, backtick is \`."
A quote is ", backslash is \, backtick is `.
$ echo "A few spaces are ; dollar is \$. \$X is ${X}."
A few spaces are ; dollar is $. $X is 5.

We have seen why the " is special for preserving spacing. Dollar is special because it marks a variable, so $X is
replaced by the shell with the contents of the variable X. Backslash is special because it is itself used to mark other
characters off; we need the following options for a complete shell:

$ echo "This is \\ a backslash"
This is \ a backslash
$ echo "This is \" a quote and this is \\ a backslash"
This is " a quote and this is \ a backslash

So backslash itself must be escaped to show that it is to be taken literally. The other special character, the backtick,
is discussed later in External Programs.

7. Loops

Most languages have the concept of loops: If we want to repeat a task twenty times, we don't want to have to type in the code
twenty times, with maybe a slight change each time.
As a result, we have for and while loops in the Bourne shell. This is somewhat fewer features than other languages, but
nobody claimed that shell programming has the power of C.

For Loops
for loops iterate through a set of values until the list is exhausted:

for.sh

#!/bin/sh
for i in 1 2 3 4 5
do
 echo "Looping ... number $i"
done

Try this code and see what it does. Note that the values can be anything at all:

for2.sh

#!/bin/sh
for i in hello 1 * 2 goodbye
do
 echo "Looping ... i is set to $i"
done

is well worth trying. Make sure that you understand what is happening here. Try it without the * and grasp the idea,
then re-read the Wildcards section and try it again with the * in place. Try it also in different directories, and with
the * surrounded by double quotes, and try it preceded by a backslash (*)

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 10 of 28
In case you don't have access to a shell at the moment (it is very useful to have a shell to hand whilst reading this
tutorial), the results of the above two scripts are:

Looping number 1
Looping number 2
Looping number 3
Looping number 4
Looping number 5

and, for the second example:

Looping ... i is set to hello
Looping ... i is set to 1
Looping ... i is set to (name of first file in current directory)
 ... etc ...
Looping ... i is set to (name of last file in current directory)
Looping ... i is set to 2
Looping ... i is set to goodbye

So, as you can see, for simply loops through whatever input it is given, until it runs out of input.

While Loops
while loops can be much more fun! (depending on your idea of fun, and how often you get out of the house...)

while.sh

#!/bin/sh
INPUT_STRING=hello
while ["$INPUT_STRING" != "bye"]
do
 echo "Please type something in (bye to quit)"
 read INPUT_STRING
 echo "You typed: $INPUT_STRING"
done

What happens here, is that the echo and read statements will run indefinitely until you type "bye" when prompted.
Review Variables - Part I to see why we set INPUT_STRING=hello before testing it. This makes it a repeat loop,
not a traditional while loop.

The colon (:) always evaluates to true; whilst using this can be necessary sometimes, it is often preferrable to use a
real exit condition. Compare quitting the above loop with the one below; see which is the more elegant. Also think
of some situations in which each one would be more useful than the other:

while2.sh

#!/bin/sh
while :
do
 echo "Please type something in (^C to quit)"
 read INPUT_STRING
 echo "You typed: $INPUT_STRING"
done

Another useful trick is the while read f loop. This example uses the case statement, which we'll cover later. It
reads from the file myfile, and for each line, tells you what language it thinks is being used. Each line must end
with a LF (newline) - if cat myfile doesn't end with a blank line, that final line will not be processed.

while3a.sh

#!/bin/sh
while read f
do
 case $f in
 hello) echo English ;;
 howdy) echo American ;;
 gday) echo Australian ;;
 bonjour) echo French ;;
 "guten tag") echo German ;;

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 11 of 28
 *) echo Unknown Language: $f
 ;;
 esac
done < myfile

On many Unix systems, this can be also be done as:

while3b.sh

#!/bin/sh
while f=`line`
do
 .. process f ..
done < myfile

But since the while read f works with any *nix, and doesn't depend on the external program line, the former is
preferable. See External Programs to see why this method uses the backtick (`).
Had I referred to $i (not $f) in the default ("Unknown Language") case above - you will get no warnings or errors
in this case, even though $i has not been declared or defined. For example:

$ i=THIS_IS_A_BUG
$ export i
$./while3.sh something
Unknown Language: THIS_IS_A_BUG
$

So make sure that you avoid typos. This is also another good reason for using ${x} and not just $x - if x="A" and
you want to say "A1", you need echo ${x}1, as echo $x1 will try to use the variable x1, which may not exist, or
may be set to B2.

I recently found an old thread on Usenet which I had been involved in, where I actually learned more ... Google has
it here..

A handy Bash (but not Bourne Shell) tip I learned recently from the Linux From Scratch project is:

mkdir rc{0,1,2,3,4,5,6,S}.d

instead of the more cumbersome:

for runlevel in 0 1 2 3 4 5 6 S
do
 mkdir rc${runlevel}.d
done

And this can be done recursively, too:

$ cd /
$ ls -ld {,usr,usr/local}/{bin,sbin,lib}
drwxr-xr-x 2 root root 4096 Oct 26 01:00 /bin
drwxr-xr-x 6 root root 4096 Jan 16 17:09 /lib
drwxr-xr-x 2 root root 4096 Oct 27 00:02 /sbin
drwxr-xr-x 2 root root 40960 Jan 16 19:35 usr/bin
drwxr-xr-x 83 root root 49152 Jan 16 17:23 usr/lib
drwxr-xr-x 2 root root 4096 Jan 16 22:22 usr/local/bin
drwxr-xr-x 3 root root 4096 Jan 16 19:17 usr/local/lib
drwxr-xr-x 2 root root 4096 Dec 28 00:44 usr/local/sbin
drwxr-xr-x 2 root root 8192 Dec 27 02:10 usr/sbin

We will use while loops further in the Test and Case sections.

8. Test
Test is used by virtually every shell script written. It may not seem that way, because test is not often called
directly. test is more frequently called as [. [is a symbolic link to test, just to make shell programs more readable.

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 12 of 28
If is also normally a shell builtin (which means that the shell itself will interpret [as meaning test, even if your Unix
environment is set up differently):

$ type [
[is a shell builtin
$ which [
/usr/bin/[
$ ls -l /usr/bin/[
lrwxrwxrwx 1 root root 4 Mar 27 2000 /usr/bin/[-> test

This means that '[' is actually a program, just like ls and other programs, so it must be surrounded by spaces:

if [$foo == "bar"]

will not work; it is interpreted as if test$foo == "bar"], which is a ']' without a beginning '['. Put spaces
around all your operators I've highlighted the mandatory spaces with the word 'SPACE' - replace 'SPACE' with an
actual space; if there isn't a space there, it won't work:

if SPACE [SPACE "$foo" SPACE == SPACE "bar" SPACE]

Test is a simple but powerful comparison utility. For full details, run man test on your system, but here are some
usages and typical examples.

Test is most often invoked indirectly via the if and while statements. It is also the reason you will come into
difficulties if you create a program called test and try to run it, as this shell builtin will be called instead of your
program!
The syntax for if...then...else... is:

if [...]
then
 # if-code
else
 # else-code
fi

Note that fi is if backwards! This is used again later with case and esac.
Also, be aware of the syntax - the "if [...]" and the "then" commands must be on different lines. Alternatively, the
semicolon ";" can seperate them:

if [...]; then
 # do something
fi

You can also use the elif, like this:

if [something]; then
 echo "Something"
 elif [something_else]; then
 echo "Something else"
 else
 echo "None of the above"
fi

This will echo "Something" if the [something] test succeeds, otherwise it will test [something_else],
and echo "Something else" if that succeeds. If all else fails, it will echo "None of the above".

Try the following code snippet, before running it set the variable X to various values (try -1, 0, 1, hello, bye, etc).
You can do this as follows (thanks to Dave for pointing out the need to export the variable, as noted in Variables -
Part I.):

$ X=5
$ export X
$./test.sh
 ... output of test.sh ...
$ X=hello
$./test.sh
 ... output of test.sh ...
$ X=test.sh
$./test.sh
 ... output of test.sh ...

Then try it again, with $X as the name of an existing file, such as /etc/hosts.

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 13 of 28

test.sh
#!/bin/sh
if ["$X" -lt "0"]
then
 echo "X is less than zero"
fi
if ["$X" -gt "0"]; then
 echo "X is more than zero"
fi
["$X" -le "0"] && \
 echo "X is less than or equal to zero"
["$X" -ge "0"] && \
 echo "X is more than or equal to zero"
["$X" = "0"] && \
 echo "X is the string or number \"0\""
["$X" = "hello"] && \
 echo "X matches the string \"hello\""
["$X" != "hello"] && \
 echo "X is not the string \"hello\""
[-n "$X"] && \
 echo "X is of nonzero length"
[-f "$X"] && \
 echo "X is the path of a real file" || \
 echo "No such file: $X"
[-x "$X"] && \
 echo "X is the path of an executable file"
["$X" -nt "/etc/passwd"] && \
 echo "X is a file which is newer than /etc/passwd"

Note that we can use the semicolon (;) to join two lines together. This is often done to save a bit of space in simple
if statements. The backslash simply tells the shell that this is not the end of the line, but the two (or more) lines
should be treated as one. This is useful for readability. It is customary to indent the following line.

As we see from these examples, test can perform many tests on numbers, strings, and filenames.

Thanks to Aaron for pointing out that -a, -e (both meaning "file exists"), -S (file is a Socket), -nt (file is
newer than), -ot (file is older than), -ef (paths refer to the same file) and -O (file is owned my user), are not
available in the traditional Bourne shell (eg, /bin/sh on Solaris, AIX, HPUX, etc).

There is a simpler way of writing if statements: The && and || commands give code to run if the result is true.

#!/bin/sh
[$X -ne 0] && echo "X isn't zero" || echo "X is zero"
[-f $X] && echo "X is a file" || echo "X is not a file"
[-n $X] && echo "X is of non-zero length" || \
 echo "X is of zero length"

This syntax is possible because there is a file (or shell-builtin) called [which is linked to test. Be careful using
this construct, though, as overuse can lead to very hard-to-read code. The if...then...else... structure is
much more readable. Use of the [...] construct is recommended for while loops and trivial sanity checks with
which you do not want to overly distract the reader.

Note that when you set X to a non-numeric value, the first few comparisons result in the message:

test.sh: [: integer expression expected before -lt
test.sh: [: integer expression expected before -gt
test.sh: [: integer expression expected before -le
test.sh: [: integer expression expected before -ge

This is because the -lt, -gt, -le, -ge, comparisons are only designed for integers, and do not work on strings. The string
comparisons, such as != will happily treat "5" as a string, but there is no sensible way of treating "Hello" as an integer, so the
integer comparisons complain.
If you want your shell script to behave more gracefully, you will have to check the contents of the variable before you test it -
maybe something like this:

echo -en "Please guess the magic number: "
read X
echo $X | grep [^0-9] > /dev/null 2>&1

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 14 of 28
if ["$?" -eq "0"]; then
 # If the grep found something other than 0-9
 # then it's not an integer.
 echo "Sorry, wanted a number"
else
 # The grep found only 0-9, so it's an integer.
 # We can safely do a test on it.
 if ["$X" == "7"]; then
 echo "You entered the magic number!"
 fi
fi

In this way you can echo a more meaningful message to the user, and exit gracefully. The $? variable is explained
in Variables - Part II, and grep is a complicated beast, so here goes: grep [0-9] finds lines of text which contain
digits (0-9) and possibly other characters, so the carat (^) in grep [^0-9] finds only those lines which don't
consist only of numbers. We can then take the opposite (by acting on failure, not success). Okay? The >/dev/null
2>&1 directs any output or errors to the special "null" device, instead of going to the user's screen.
Many thanks to Paul Schermerhorn for correcting me - this page used to claim that grep -v [0-9] would work,
but this is clearly far too simplistic.

We can use test in while loops as follows:

test2.sh

#!/bin/sh
X=0
while [-n "$X"]
do
 echo "Enter some text (RETURN to quit)"
 read X
 echo "You said: $X"
done

This code will keep asking for input until you hit RETURN (X is zero length). Thanks to Justin Heath for pointing
out that the script didn't work - I'd missed out the quotes around $X in the while [-n "$X"]. Without those
quotes, there is nothing to test when $X is empty.
Alexander Weber has pointed out that running this script will end untidily:

$./test2.sh
Enter some text (RETURN to quit)
fred
You said: fred
Enter some text (RETURN to quit)
wilma
You said: wilma
Enter some text (RETURN to quit)

You said:
$

This can be tidied up with another test within the loop:

#!/bin/sh
X=0
while [-n "$X"]
do
 echo "Enter some text (RETURN to quit)"
 read X
 if [-n "$X"]; then
 echo "You said: $X"
 fi
done

Note also that I've used two different syntaxes for if statements on this page. These are:

if ["$X" -lt "0"]
then
 echo "X is less than zero"
fi

.......... and
 document made by Ёжич

Скачано с сайта гр. ВВ-2-06
http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 15 of 28
if [! -n "$X"]; then
 echo "You said: $X"
fi

You must have a break between the if statement and the then construct. This can be a semicolon or a newline, it
doesn't matter which, but there must be one or the other between the if and the then. It would be nice to just say:

if [! -n "$X"]
 echo "You said: $X"

but the then and fi are absolutely required.

9. Case

The case statement saves going through a whole set of if .. then .. else statements. Its syntax is really quite simple:

talk.sh

#!/bin/sh

echo "Please talk to me ..."
while :
do
 read INPUT_STRING
 case $INPUT_STRING in
 hello)
 echo "Hello yourself!"
 ;;
 bye)
 echo "See you again!"
 break
 ;;
 *)
 echo "Sorry, I don't understand"
 ;;
 esac
done
echo
echo "That's all folks!"

Okay, so it's not the best conversationalist in the world; it's only an example!

Try running it and check how it works...

$./talk.sh
Please talk to me ...
hello
Hello yourself!
what do you think of politics?
Sorry, I don't understand
bye
See you again!

That's all folks!
$

The syntax is quite simple:
The case line itself is always of the same format, and it means that we are testing the value of the variable INPUT_STRING.

The options we understand are then listed and followed by a right bracket, as hello) and bye).
This means that if INPUT_STRING matches hello then that section of code is executed, up to the double
semicolon.
If INPUT_STRING matches bye then the goodbye message is printed and the loop exits. Note that if we wanted to
exit the script completely then we would use the command exit instead of break.
The third option here, the *), is the default catch-all condition; it is not required, but is often useful for debugging
purposes even if we think we know what values the test variable will have.

The whole case statement is ended with esac (case backwards!) then we end the while loop with a done.

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 16 of 28
That's about as complicated as case conditions get, but they can be a very useful and powerful tool. They are often
used to parse the parameters passed to a shell script, amongst other uses.

10. Variables - Part II
There are a set of variables which are set for you already, and most of these cannot have values assigned to them.
These can contain useful information, which can be used by the script to know about the environment in which it is running.

The first set of variables we will look at are $0 .. $9 and $#.
The variable $0 is the basename of the program as it was called.
$1 .. $9 are the first 9 additional parameters the script was called with.
The variable $@ is all parameters $1 .. whatever. The variable $*, is similar, but does not preserve any
whitespace, and quoting, so "File with spaces" becomes "File" "with" "spaces". This is similar to the echo stuff we
looked at in A First Script. As a general rule, use $@ and avoid $*.
$# is the number of parameters the script was called with.
Let's take an example script:

var3.sh

#!/bin/sh
echo "I was called with $# parameters"
echo "My name is $0"
echo "My first parameter is $1"
echo "My second parameter is $2"
echo "All parameters are $@"

Let's look at running this code and see the output:

$ /home/steve/var3.sh
I was called with 0 parameters
My name is /home/steve/var3.sh
My first parameter is
My second parameter is
All parameters are
$
$./var3.sh hello world earth
I was called with 3 parameters
My name is ./var3.sh
My first parameter is hello
My second parameter is world
All parameters are hello world earth

Note that the value of $0 changes depending on how the script was called. The external utility basename can help tidy this
up:

echo "My name is `basename $0`"

$# and $1 .. $2 are set automatically by the shell.
We can take more than 9 parameters by using the shift command; look at the script below:

var4.sh

#!/bin/sh
while ["$#" -gt "0"]
do
 echo "\$1 is $1"
 shift
done

This script keeps on using shift until $# is down to zero, at which point the list is empty.

Another special variable is $?. This contains the exit value of the last run command. So the code:
document made by Ёжич

Скачано с сайта гр. ВВ-2-06
http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 17 of 28

#!/bin/sh
/usr/local/bin/my-command
if ["$?" -ne "0"]; then
 echo "Sorry, we had a problem there!"
fi

will attempt to run /usr/local/bin/my-command which should exit with a value of zero if all went well, or a
nonzero value on failure. We can then handle this by checking the value of $? after calling the command. This helps
make scripts robust and more intelligent.

Well-behaved applications should return zero on success. Hence the quote:

One of the main causes of the fall of the Roman Empire was that, lacking zero, they had no way to indicate
successful termination of their C Programs. (Robert Firth)

The other two main variables set for you by the environment are $$ and $!. These are both process numbers.
The $$ variable is the PID (Process IDentifier) of the currently running shell. This can be useful for creating
temporary files, such as /tmp/my-script.$$ which is useful if many instances of the script could be run at the
same time, and they all need their own temporary files.

The $! variable is the PID of the last run background process. This is useful to keep track of the process as it gets
on with its job.

Another interesting variable is IFS. This is the Internal Field Separator. The default value is SPACE TAB
NEWLINE, but if you are changing it, it's easier to take a copy, as shown:

var5.sh

#!/bin/sh
old_IFS="$IFS"
IFS=:
echo "Please input three data separated by colons ..."
read x y z
IFS=$old_IFS
echo "x is $x y is $y z is $z"

This script runs like this:

$./ifs.sh
Please input some data separated by colons ...
hello:how are you:today
x is hello y is how are you z is today

It is important when dealing with IFS in particular (but any variable not entirely under your control) to realise that it
could contain spaces, newlines and other "uncontrollable" characters. It is therefore a very good idea to use double-
quotes around it, ie: old_IFS="$IFS" instead of old_IFS=$IFS.

11. Variables - Part III
As we mentioned in Variables - Part I, curly brackets around a variable avoid confusion:

foo=sun
echo $fooshine # $fooshine is undefined
echo ${foo}shine # displays the word "sunshine"

That's not all, though - these fancy brackets have a another, much more powerful use. We can deal with issues of variables
being undefined or null (in the shell, there's not much difference between undefined and null).

Using Default Values

Consider the following code snippet which prompts the user for input, but accepts defaults:
#!/bin/sh
echo -en "What is your name [`whoami`] "

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 18 of 28
read myname
if [-z "$myname"]; then
 myname=`whoami`
fi
echo "Your name is : $myname"

The "-en" to echo tells it not to add a linebreak. On some systems, you use a "\c" at the end of the line, instead.
This script runs like this:

steve$./name.sh
What is your name [steve]
Your name is : steve

... or, with user input:

steve$./name.sh
What is your name [steve] foo
Your name is : foo

This could be done better using a shell variable feature. By using curly braces and the special ":-" usage, you can specify a
default value to use if the variable is unset:

echo -en "What is your name [`whoami`] "
read myname
echo "Your name is : ${myname:-`whoami`}"

This could be considered a special case - we're using the output of the whoami command, which prints your login name (UID).
The more canonical example is to use fixed text, like this:

echo "Your name is : ${myname:-John Doe}"

As with other use of the backticks, `whoami` runs in a subshell, so any cd commands, or setting any other variables, within
the backticks, will not affect the currently-running shell.

Using and Setting Default Values

There is another syntax, ":=", which sets the variable to the default if it is undefined:
echo "Your name is : ${myname:=John Doe}"

This technique means that any subsequent access to the $myname variable will always get a value, either entered by the user,
or "John Doe" otherwise.

12. External Programs
External programs are often used within shell scripts; there are a few builtin commands (echo, which, and test
are commonly builtin), but many useful commands are actually Unix utilities, such as tr, grep, expr and cut.

The backtick (`)is also often associated with external commands. Because of this, we will discuss the backtick first.
The backtick is used to indicate that the enclosed text is to be executed as a command. This is quite simple to
understand. First, use an interactive shell to read your full name from /etc/passwd:

$ grep "^${USER}:" /etc/passwd | cut -d: -f5
Steve Parker

Now we will grab this output into a variable which we can manipulate more easily:

$ MYNAME=`grep "^${USER}:" /etc/passwd | cut -d: -f5`
$ echo $MYNAME
Steve Parker

So we see that the backtick simply catches the standard output from any command or set of commands we choose to
run. It can also improve performance if you want to run a slow command or set of commands and parse various bits
of its output:

#!/bin/sh
find / -name "*.html" -print | grep "/index.html$"
find / -name "*.html" -print | grep "/contents.html$"

This code could take a long time to run, and we are doing it twice!
A better solution is:

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 19 of 28

#!/bin/sh
HTML_FILES=`find / -name "*.html" -print`
echo $HTML_FILES | grep "/index.html$"
echo $HTML_FILES | grep "/contents.html$"

This way, we are only running the slow find once, roughly halving the execution time of the script.

We discuss specific examples further in the Hints and Tips section of this tutorial.

13. Functions
One often-overlooked feature of Bourne shell script programming is that you can easily write functions for use within your
script. This is generally done in one of two ways; with a simple script, the function is simply declared in the same file as it is
called.
However, when writing a suite of scripts, it is often easier to write a "library" of useful functions, and source that file at the start
of the other scripts which use the functions. This will be shown later.
The method is the same however it is done; we will primarily be using the first way here. The second (library) method is
basically the same, except that the command

. ./library.sh
goes at the start of the script.

There could be some confusion about whether to call shell functions procedures or functions; the definition of a
function is traditionally that is returns a single value, and does not output anything. A procedure, on the other hand,
does not return a value, but may produce output. A shell function may do neither, either or both. It is generally
accepted that in shell scripts they are called functions.

A function may return a value in three ways:

• Change the state of a variable or variables
• Use the exit command to end the shell script
• Use the return command to end the function, and return the supplied value to the calling section of the shell script

This is rather like C, in that exit stops the program, and return returns control to the caller. The difference is that
a shell function cannot change its parameters, though it can change global parameters.

A simple script using a function would look like this:

function.sh

#!/bin/sh
A simple script with a function...

add_a_user()
{
 USER=$1
 PASSWORD=$2
 shift; shift;
 # Having shifted twice, the rest is now comments ...
 COMMENTS=$@
 echo "Adding user $USER ..."
 echo useradd -c "$COMMENTS" $USER
 echo passwd $USER $PASSWORD
 echo "Added user $USER ($COMMENTS) with pass $PASSWORD"
}

Main body of script starts here

echo "Start of script..."
add_a_user bob letmein Bob Holness the presenter
add_a_user fred badpassword Fred Durst the singer
add_a_user bilko worsepassword Sgt. Bilko the role model
echo "End of script..."

document made by Ёжич

Скачано с сайта гр. ВВ-2-06
http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 20 of 28
Line 4 identifies itself as a function declaration by ending in (). This is followed by {, and everything following to
the matching } is taken to be the code of that function.
This code is not executed until the function is called. Functions are read in, but basically ignored until they are
actually called.

Note that for this example the useradd and passwd commands have been prefixed with echo - this is a useful
debugging technique to check that the right commands would be executed. It also means that you can run the script
without being root or adding dodgy user accounts to your system!

We have been used to the idea that a shell script is executed sequentially. This is not so with functions.
In this case, the function add_a_user is read in and checked for syntax, but not executed until it is explicitly
called.
Execution starts with the echo statement "Start of script...". The next line, add_a_user bob letmein Bob
Holness is recognised as a function call so the add_a_user function is entered and starts executing with certain
additions to the environment:

$1=bob
$2=letmein
$3=Bob
$4=Holness
$5=the
$6=presenter

So within that function, $1 is set to bob, regardless of what $1 may be set to outside of the function.
So if we want to refer to the "original" $1 inside the function, we have to assign a name to it - such as: A=$1 before
we call the function. Then, within the function, we can refer to $A.
We use the shift command again to get the $3 and onwards parameters into $@. The function then adds the user
and sets their password. It echoes a comment to that effect, and returns control to the next line of the main code.

Scope of Variables
Programmers used to other languages may be surprised at the scope rules for shell functions. Basically, there is no
scoping, other than the parameters ($1, $2, $@, etc).
Taking the following simple code segment:

#!/bin/sh

myfunc()
{
 echo "I was called as : $@"
 x=2
}

Main script starts here

echo "Script was called with $@"
x=1
echo "x is $x"
myfunc 1 2 3
echo "x is $x"

The script, when called as scope.sh a b c, gives the following output:

Script was called with a b c
x is 1
I was called as : 1 2 3
x is 2

The $@ parameters are changed within the function to reflect how the function was called. The variable x, however,
is effectively a global variable - myfunc changed it, and that change is still effective when control returns to the
main script.

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 21 of 28
A function will be called in a sub-shell if its output is piped somewhere else - that is, "myfunc 1 2 3 | tee
out.log" will still say "x is 1" the second time around. This is because a new shell process is called to pipe
myfunc(). This can make debugging very frustrating; Astrid had a script which suddenly failed when the "| tee"
was added, and it is not immediately obvious why this must be. The tee has to be started up before the function to
the left of the pipe; with the simple example of "ls | grep foo", then grep has to be started first, with its stdin
then tied to the stdout of ls once ls starts. In the shell script, the shell has already been started before we even
knew we were going to pipe through tee, so the operating system has to start tee, then start a new shell to call
myfunc(). This is frustrating, but well worth being aware of.

Functions cannot change the values they have been called with, either - this must be done by changing the variables
themselves, not the parameters as passed to the script.
An example shows this more clearly:

#!/bin/sh

myfunc()
{
 echo "\$1 is $1"
 echo "\$2 is $2"
 # cannot change $1 - we'd have to say:
 # 1="Goodbye Cruel"
 # which is not a valid syntax. However, we can
 # change $a:
 a="Goodbye Cruel"
}

Main script starts here

a=Hello
b=World
myfunc $a $b
echo "a is $a"
echo "b is $b"

This rather cynical function changes $a, so the message "Hello World" becomes "Goodbye Cruel World".

Recursion
Functions can be recursive - here's a simple example of a factorial function:

factorial.sh

#!/bin/sh

factorial()
{
 if ["$1" -gt "1"]; then
 i=`expr $1 - 1`
 j=`factorial $i`
 k=`expr $1 * $j`
 echo $k
 else
 echo 1
 fi
}

while :
do
 echo "Enter a number:"
 read x
 factorial $x
done

As promised, we will now briefly discuss using libraries between shell scripts. These can also be used to define
common variables, as we shall see.

 document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 22 of 28
common.lib

common.lib
Note no #!/bin/sh as this should not spawn
an extra shell. It's not the end of the world
to have one, but clearer not to.

STD_MSG="About to rename some files..."

rename()
{
 # expects to be called as: rename .txt .bak
 FROM=$1
 TO=$2

 for i in *$FROM
 do
 j=`basename $i $FROM`
 mv $i ${j}$TO
 done
}

function2.sh

#!/bin/sh
function2.sh
. ./common.lib
echo $STD_MSG
rename txt bak

function3.sh

#!/bin/sh
function3.sh
. ./common.lib
echo $STD_MSG
rename html html-bak

Here we see two user shell scripts, function2.sh and function3.sh, each sourceing the common library file
common.lib, and using variables and functions declared in that file.
This is nothing too earth-shattering, just an example of how code reuse can be done in shell programming.

Exit Codes
For details about exit codes, see the Exit Codes part of the Hints and Tips section of the tutorial. For now, though
we shall briefly look at the return call.

#!/bin/sh

adduser()
{
 USER=$1
 PASSWD=$2
 shift ; shift
 COMMENTS=$@
 useradd -c "${COMMENTS}" $USER
 if ["$?" -ne "0"]; then
 echo "Useradd failed"
 return 1
 fi
 passwd $USER $PASSWD
 if ["$?" -ne "0"]; then
 echo "Setting password failed"
 return 2
 fi
 echo "Added user $USER ($COMMENTS) with pass $PASSWORD"
}

Main script starts here

adduser bob letmein Bob Holness from Blockbusters
if ["$?" -eq "1"]; then
 echo "Something went wrong with useradd"

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 23 of 28
elif ["$?" -eq "2"]; then
 echo "Something went wrong with passwd"
else
 echo "Bob Holness added to the system."
fi

This script checks the two external calls it makes (useradd and passwd), and lets the user know if they fail. The
function then defines a return code of 1 to indicate any problem with useradd, and 2 to indicate any problem with
passwd. That way, the calling script knows where the problem lay.

14. Hints and Tips
Unix is full of text manipulating utilities, some of the more powerful of which we will now discuss in this section of
this tutorial. The significance of this, is that virtually everything under Unix is text. Virtually anything you can think
of is controlled by either a text file, or by a command-line-interface (CLI). The only thing you can't automate using
a shell script is a GUI-only utility or feature. And under Unix, there aren't too many of them!

You may have heard it said, that, with *nix, "everything is a file" - it's true.

We have a few subsections here ... what follows is general advice, hints and tips.

CGI Scripting

Exit Codes and flow control

Simple Expect replacement

Using trap to know when you've been interrupted - such as a CTRL-C, etc.

Workaround for the 'echo -n' vs 'echo \c' dichotomy

Documented Example of a real-life script I wrote - it helps users configure a SpeedTouch modem, and is available
at http://speedtouchconf.sourceforge.net/.

We have already shown above a use of the simple but effective cut command. We shall discuss a few examples
here some of the more common external programs to be used.

grep is an extremely useful utility for the shell script programmer.
An example of grep would be:

#!/bin/sh
steves=`grep -i steve /etc/passwd | cut -d: -f1`
echo "All users with the word \"steve\" in their passwd"
echo "Entries are: $steves"

This script looks fine if there's only one match. However, if there are two lines in /etc/passwd with the word "steve"
in them, then the interactive shell will display:

$> grep -i steve /etc/passwd
steve:x:5062:509:Steve Parker:/home/steve:/bin/bash
fred:x:5068:512:Fred Stevens:/home/fred:/bin/bash
$> grep -i steve /etc/passwd |cut -d: -f1
steve
fred

But the script will display:

Entries are: steve fred

By putting the result into a variable we have changed the NEWLINEs into spaces; the sh manpage tells us that the
first character in $IFS will be used for this purpose. IFS is <space><tab><cr> by default. Maybe though we wanted
to keep the NEWLINEs: It could look better if we made the spaces into NEWLINEs.... This is a job for tr:

 document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 24 of 28
#!/bin/sh
steves=`grep -i steve /etc/passwd | cut -d: -f1`
echo "All users with the word \"steve\" in their passwd"
echo "Entries are: "
echo "$steves" | tr ' ' '\012'

Note that tr translated the spaces into octal character 012 (NEWLINE).
Another common use of tr is its use of range... it can convert text to upper or lower case, for example:

#!/bin/sh
steves=`grep -i steve /etc/passwd | cut -d: -f1`
echo "All users with the word \"steve\" in their passwd"
echo "Entries are: "
echo "$steves" | tr ' ' '\012' | tr '[a-z]' '[A-Z]'

Here we have added a translation of [a-z] to [A-Z]. Note that there are exactly the same number of values in the
range a-z as A-Z. This can then translate any character falling into the ASCII range a-z into A-Z ... in other words,
converting lowercase letters into uppercase. tr is actually cleverer than this: tr [:lower:] [:upper:] would
do the job just as well, and possibly more readably. It's also not as portable; not every tr can do this.

Cheating
Those who can't ... cheat

There is nothing wrong with cheating! Some things the shell just isn't very good at. Two useful tools are sed and
awk. Whilst these are two hugely powerful utilities, which can be used as mini- programming languages in their
own right, they are often used in shell scripts for very simple, specific reasons.

Whilst this means that the system has to load a largeish executable (52k for sed and 110k for awk), which is a nasty
thing to do, the reason a good workman doesn't blame his tools, is that a good workman uses the right tools in the
first place.
So let me introduce these two, with very simple uses.

Cheating with awk

Consider wc, which counts the number of characters, lines, and words in a text file. Its output is:

$ wc hex2env.c
 102 189 2306 hex2env.c

If we want to get the number of lines into a variable, simply using:

NO_LINES=`wc -l file`

which would read in the whole line.
Because the output is space-padded, we can't reliably get the number 102 into the string. Instead, we use the fact
that awk works similarly to scanf in C - it strips unwanted whitespace. It puts these into variables $1 $2 $3 etc.
So we use this contstruct:

NO_LINES=`wc -l file | awk '{ print $1 }'`

The variable NO_LINES is now 102.

Cheating with sed

Another handy utility is sed - the stream editor. Perl is very good at dealing with regular expressions, the shell isn't.
So we can quickly use the s/from/to/g construct by invoking sed.For example:

sed s/eth0/eth1/g file1 > file2

changes every instance of eth0 in file1 to eth1 in file2.
If we were only changing a single character, tr would be the tool to use, being smaller and therefore faster to load.
Another thing that tr can't do, is remove characters from a file:

echo ${SOMETHING} | sed s/"bad word"//g

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 25 of 28
This removes the phrase "bad word" from the variable ${SOMETHING}. It may be tempting to say, "But grep can
do that!" - grep only deals with whole lines. Consider the file:

This line is okay.
This line contains a bad word. Treat with care.
This line is fine, too.

Grep would remove the whole second line, leaving only a two-line file; sed would change the file to read:

This line is okay.
This line contains a . Treat with care.
This line is fine, too.

Telnet hint
Here's a handy one I just picked up from Sun's Explorer utility. By creating a script such as this, your own script, or
from a command line, you can run:

$./telnet1.sh | telnet

I have had a few people ask me about this, and have tended to point them towards the expect suite of code, which is
pretty complex and bulky; this code should be pretty portable amongst systems (so long as they've got egrep). If it
doesn't work on your system, try using GNU grep with the -q switch, or a proprietary grep and direct to /dev/null.
Still a lot easier than installing expect, though.

telnet1.sh

#!/bin/sh
host=127.0.0.1
port=23
login=steve
passwd=hellothere
cmd="ls /tmp"

echo open ${host} ${port}
sleep 1
echo ${login}
sleep 1
echo ${passwd}
sleep 1
echo ${cmd}
sleep 1
echo exit

However, Sun add some clever error-checking code (note that the variables you could set and export from your
current shell or shell script, to avoid storing passwords in readable files):

$./telnet2.sh | telnet > file1

telnet2.sh

#!/bin/sh
telnet2.sh | telnet > FILE1
host=127.0.0.1
port=23
login=steve
passwd=hellothere
cmd="ls /tmp"
timeout=3
file=file1
prompt="$"

echo open ${host} ${port}
sleep 1
tout=${timeout}
while ["${tout}" -ge 0]
do
 if tail -1 "${file}" 2>/dev/null | egrep -e "login:" > /dev/null
 then
 echo "${login}"
 sleep 1
 tout=-5
 continue

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 26 of 28
 else
 sleep 1
 tout=`expr ${tout} - 1`
 fi
done

if ["${tout}" -ne "-5"]; then
 exit 1
fi

tout=${timeout}
while ["${tout}" -ge 0]
do
 if tail -1 "${file}" 2>/dev/null | egrep -e "Password:" > /dev/null
 then
 echo "${passwd}"
 sleep 1
 tout=-5
 continue
 else
 if tail -1 "${file}" 2>/dev/null | egrep -e "${prompt}" > /dev/null
 then
 tout=-5
 else
 sleep 1
 tout=`expr ${tout} - 1`
 fi
 fi
done

if ["${tout}" -ne "-5"]; then
 exit 1
fi

> ${file}

echo ${cmd}
sleep 1
echo exit

Note that with this version, the output is grabbed to file1, and that this file is actually used by the script to check
on its progress. I have added "> ${file}" so that the output received into the file is just the output of the
command, not the logging-in process too.

15. Quick Reference
This is a quick reference guide to the meaning of some of the less easily guessed commands and codes.

Command Description Example
& Run the previous command in the background ls &

&& Logical AND if ["$foo" -ge "0"] && ["$foo" -le "9"]
|| Logical OR if ["$foo" -lt "0"] || ["$foo" -gt "9"

] (not in Bourne shell)
^ Start of line grep "^foo"
$ End of line grep "foo$"
= String equality (cf. -eq) if ["$foo" = "bar"]
! Logical NOT if ["$foo" != "bar"]

$$ PID of current shell echo "my PID = $$"
$! PID of last background command ls & echo "PID of ls = $!"
$? exit status of last command ls ; echo "ls returned code $?"
$0 Name of current command (as called) echo "I am $0"
$1 Name of current command's first parameter echo "My first argument is $1"
$9 Name of current command's ninth parameter echo "My ninth argument is $9"
$@ All of current command's parameters (preserving

whitespace and quoting)
echo "My arguments are $@"

$* All of current command's parameters (not
preserving whitespace and quoting)

echo "My arguments are $*"

-eq Numeric Equality if ["$foo" -eq "9"]
document made by Ёжич

Скачано с сайта гр. ВВ-2-06
http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 27 of 28
-ne Numeric Inquality if ["$foo" -ne "9"]
-lt Less Than if ["$foo" -lt "9"]
-le Less Than or Equal if ["$foo" -le "9"]
-gt Greater Than if ["$foo" -gt "9"]
-ge Greater Than or Equal if ["$foo" -ge "9"]
-z String is zero length if [-z "$foo"]
-n String is not zero length if [-n "$foo"]
-nt Newer Than if ["$file1" -nt "$file2"]
-d Is a Directory if [-d /bin]
-f Is a File if [-f /bin/ls]
-r Is a readable file if [-r /bin/ls]
-w Is a writable file if [-w /bin/ls]
-x Is an executable file if [-x /bin/ls]

parenthesis:
(...)

Function definition function myfunc() { echo hello }

16. Interactive Shell
Here are a few quick hints for using the UNIX or Linux shell interactively. Personally I recommend the bash shell
for most interactive use; it is available on just about every *nix flavour, and very pleasant to use as a login shell.
However the root shell should always be /bin/sh, whether that points to bash or bourne shell.

bash

bash has some very handy history-searching tools; the up and down arrow keys will scroll through the history of
previous commands. More usefully, Ctrl+r will do a reverse-search, matching any part of the command line. Hit
ESC and the selected command will be pasted into the current shell for you to edit as required.

If you want to repeat a command you ran before, and you know what characters it started with, you can do this:

bash$ ls /tmp
(list of files in /tmp)
bash$ touch /tmp/foo
bash$!l
ls /tmp
(list of files in /tmp, now including /tmp/foo)

As well as the arrow keys, you can use PageUp and PageDn to navigate to the start and end of the command line.

ksh

You can make ksh more usable by adding history commands, either in vi or emacs mode. There are a number of
ways to do this, depending on the exact circumstances. set -o vi, ksh -o vi, or exec ksh -o vi (where "vi"
could be replaced by "emacs" if you prefer emacs mode).

If you want to start a ksh session from another interactive shell, you can just call ksh like this:

csh% # oh no, it's csh!
csh% ksh
ksh$ # phew, that's better
ksh$ # do some stuff under ksh
ksh$ # then leave it back at the csh prompt:
ksh$ exit
csh%

This will start a new ksh session, which you can exit from and return to the previous shell. Alternatively, you could
replace the csh (or whatever shell) with a ksh shell, with the exec command:

csh% # oh no, it's csh!
csh% exec ksh
ksh$ # do some stuff under ksh
ksh$ exit

login:

The difference here is that you don't get the csh session back.
document made by Ёжич

Скачано с сайта гр. ВВ-2-06
http://vv206.selfip.org/

Steve's Bourne / Bash Scripting Tutorial Page# 28 of 28
The good stuff is the history:

csh% ksh
ksh$ set -o vi
ksh$ # You can now edit the history with vi-like commands,
 # and use ESC-k to access the history.

If you hit ESC then k, then by repeatedly hitting k you scroll backwards through the command history. You can use
vi command-mode and entry-mode commands to edit the commands, like this:

ksh$ touch foo
 ESC-k (enter vi mode, brings up the previous command)
 w (skip to the next word, to go from "touch" to "foo"
 cw (change word) bar (change "foo" to "bar")
ksh$ touch bar

document made by Ёжич
Скачано с сайта гр. ВВ-2-06

http://vv206.selfip.org/

